The $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ Manual

Michael J. Wichura

The University of Chicago

First printing: November 1986
Second printing: September 1987
This manual was written using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ supplemented by the $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ macros. The feature described herein exist in Version 1.1 of $\mathrm{P}_{\mathrm{T}} \mathrm{IT}_{\mathrm{E}} \mathrm{X}$

The PICTEX project was carried out using computer facilities supported in part by Na tional Science Foundation Grant No. DMS-8404941 to the Department of Statistics at the University of Chicago.

The author provides no guarantee as to the correctness of this manual and the associated software; the user accepts them as is.

Copyright © 1987 by Michael J. Wichura All rights reserved.

PREFACE

In the preface to The $T_{E} X b o o k$, Knuth describes $T_{E} X$ as a "typesetting system intended for the creation of beautiful books-and especially for books that contain a lot of mathematics". $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ is a collection of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros by means of which $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users can easily instruct $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to typeset beautiful pictures as a part of their books - and especially mathematical figures, such as the one below:

FIGURE 1

That figure is destined to appear in a book on probability theory that I'm writing using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Indeed, the $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ macros are an outgrowth of the attempt I made at coercing $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ into drawing the kinds of figures I wanted to include in that book. Happily, it turned out that what I wanted to be able to do fell just within the limits of what seems feasible by way of making $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ function as a graphics device.
$\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ offers these advantages: (1) Figures become an integral part of the typesetting process. You can avoid having to leave the proper amount of space in your document for material that has to be created on some external device and later stripped into the finished product. (2) All of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s formatting capabilities are available for annotating your figures. In addition, that annotation will be done (if you so desire) in the same fonts as you're using in the rest of your document. (3) Just as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is machine independent, so too is $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$. It doesn't matter whether you're working on a PC or mainframe computer. (4) Since typeset figures are embedded in the dvi file along with the

1. INTRODUCTION

1.1. $P_{I} C T_{E} X$ COMMANDS

To draw a $\mathrm{P}_{\mathrm{I}} C t u r e$ you first have to load the $\mathrm{PICTEX}_{\mathrm{I}}$ macros into TEX 's memory-see your local system guru for details. To start drawing a $\mathrm{P}_{\mathrm{I}} \mathrm{C}$ ture you type the command \beginpicture, and to finish it off you type the command \endpicture. The overall structure is thus

```
\beginpicture
    additional P}\mp@subsup{\textrm{P}}{\textrm{I}}{2
\endpicture
```

All this goes in your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ input file.
The $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ commands are described in detail in the following pages. A few words need to be said here about the syntax with which sample commands are presented. Consider, e.g., the \put command of Subsection 2.1:
\put \{text\} $\left[\left[\left[o_{x}\right]\left[o_{y}\right]\right]\right][\langle x s h i f t, y s h i f t\rangle]$ at xcoord ycoord
First of all, notice the matched pairs of thin brackets: [] and []. In contrast to the thick brackets '[' and ']', these are not part of the command; rather they indicate that the phrases contained therein may be omitted. Secondly, note the blank spaces separating the various phrases of the command. These are essential. However to enhance the readability of your input, you can use as many spaces as you like (provided there is at least one) wherever a sample command shows a single space. Moreover, at least one blank must follow every $\mathrm{P}_{\mathrm{T}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ command. Do try hard to get the syntax of the $\mathrm{P}_{\mathrm{T}} \overline{\mathrm{CT}_{\mathrm{E}} \mathrm{X}}$ commands right, paying particular attention to the delimiters \{, \}, [,], <, $>$, (,), and $/$. If you mess up, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ will get confused and you will get a lot of error messages - and quite possibly no P_{I} Cture. Appendix C lists all the $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ commands alphabetically, so you can easily check the syntax of any command you write.

Exercise 1. B. L. User didn't pay attention to the three words that were underlined in the preceding paragraph. What price did he pay in consequence?

It is important that you understand $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s concept of grouping (see Chapter 5 of The $T_{E} X b o o k$). The point is that any change you make to one of $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$'s parameters is local to the group in which that change is made. In particular, since \beginpicture and \endpicture mark the start and end of a group, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ will undo the changes you've made while drawing a $\mathrm{P}_{\mathrm{I}} \mathrm{Cture}$ once it reaches the terminating \endpicture command. Consider, e.g., the effect of $\mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$'s \setcoordinatesystem command, which is discussed in the next subsection. There is a major difference between typing

APPENDICES

A. ANSWERS TO ALL THE EXERCISES

1. Untold hours of frustration.
2. The reference point of the first system is at its origin, while the reference point of the second system is $20 x$-units to the left of its origin. Since $1 x$-unit in the second system amounts to 10 pts , the origin of the second system is 200 pts to the right of that of the first system.
3. (1) He should have omitted the ['s and]'s. (He presumably skimmed Subsection 1.1 and so misinterpreted the []'s that appear in the statement of the syntax of the \setcoordinatesystem command on page 3.) (2) He should have left a space after 'units'. (3) He should have typed '1in, 2in' instead of '1inch, 2inches'. (Page 57 of The $T_{E} X b o o k$ lists the only ways dimensions can be written). (4) He should have typed ' $3-2$ ' instead of ' $(3,-2)$ '.
4. \put $\{\$ \backslash$ bullet $\$\}$ at 12
\put $\{\$(1,2) \$\}$ [1] <10pt,0pt> at 12
5. \put \{\ninepoint\$\bullet\$\} at 12
\put \{\ninepoint $\$(1,2) \$\}$ [1] <10pt,Opt> at 12
or (better)
\ninepoint
\put \{\$\bullet\$\} at 12
\put $\{\$(1,2) \$\}[1]<10 p t, 0 p t>$ at 12
6. The author used
```
\setcoordinatesystem units <1pt,1pt>
\put {\vrule height .4pt width 300pt} [1] at 0 0
\multiput {\vrule height 18pt} [t] at 0 0 *3 100 0 /
\multiput {\vrule height 14pt} [t] at 0 0 *6 50 0 /
\multiput {\vrule height 10pt} [t] at 0 0 *30 10 0 /
\multiput {\vrule height 6pt} [t] at 5 0 *29 10 0 /
\put {0 pt} [t] at 0-24 \put {100 pt} [t] at 100 -24
\put {200 pt} [t] at 200-24 \put {300 pt} [t] at 300-24
```

7. You get: $(3,2) \rightarrow \times$ stacking

> simple
as ABC
8. You get: $\quad(3,2) \rightarrow \times \quad$ Rows of lines
are easy to put
into a PiCture
9. (a) No. In the first case the word 'lines' sits just above the point $(3,2)$, whereas in the second case the word 'Two' sits just above this point. (b) Yes.

CONTENTS

Preface iii
SECTION

1. Introduction 1
1.1. $\mathrm{P}_{\mathrm{ICT}} \mathrm{CT}$ COMMANDS 1
1.2. COORDINATE SYSTEMS 2
2. Putting text into a PICTURE 4
2.1. Single Puts 4
2.2. MULTIPLE PUTS 6
2.3. STACKS OF LETTERS AND ROWS OF LINES 8
3. Graph setup 9
3.1. Establishing a Plot area 10
3.2. DRAWING AXES 10
3.3. Headings and grids 14
3.4. Modifying the defaults for graph setup 15
4. RULES AND OBJECTS MADE FROM THEM 17
4.1. Rules 17
4.2. Rectangles 18
4.3. Histograms 19
4.4. BAR GRAPHS 21
4.5. $\quad \mathrm{P}_{\mathrm{I}} \mathrm{CT}_{\mathrm{E}} \mathrm{X}$ 'S INTERPOLATION MODES 22
5. LINES AND CURVES 23
5.1. PIECEWISE LINEAR AND QUADRATIC INTERPOLATION 23
5.2. Specifying the plot symbol 25
5.3. CIRCLES AND ELLIPSES 26
5.4. ARrows 27
5.5. The role of plot areas 28
5.6. REPLOTTING LINES AND CURVES 29
5.7. THE CURVE DRAWING ALGORITHM 31
6. DOTS AND DASHES 34
6.1. Simple dot and dash patterns 34
6.2. GENERAL DASH PATTERNS 36
6.3. TAILORING A PATTERN TO THE LENGTH OF A CURVE 37
7. Shading 38
7.1. Specifying the shading symbol 38
7.2. Specifying the shading lattice 39
7.3. SHADING: VERTICAL MODE 40
